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Unmixing AVHRR Imagery to Assess

Clearcuts and Forest Regrowth in Oregon
Christine A. Hlavka and Michael A. Spanner

Abstract--Advanced Very High Resolution Radiometer im-

agery provides frequent and low-cost coverage of the earth, but

its coarse spatial resolution (-1.1 km by 1.1 km) does not lend

itself to standard techniques of automated categorization of land

cover classes because the pixels are generally mixed; that is,

the extent of the pixel includes several land use/cover classes.

Unmixing procedures were developed to extract land use/cover

class signatures from mixed pixels, using Landsat Thematic

Mapper data as a source for the training set, and to estimate

fractions of class coverage within pixels. Application of these

unmixing procedures to mapping forest clearcuts and regrowth

in Oregon indicated that unmixing is a promising approach for

mapping major trends in land cover with AVHRR bands 1 and

2. Including thermal bands by unmixing AVHRR bands 1-4 did

not lead to significant improvements in accuracy, but experiments

with unmixing these four bands did indicate that use of weighted

least squares techniques might lead to improvements in other

applications of unmixing.

I. INTRODUCTION

HE Advanced Very High Resolution Radiometer
(AVHRR) series of sensors aboard the National

Oceanic and Atmospheric Administration (NOAA) polar-

orbiting satellites was originally designed for meteorological

applications, in particular, tracking of weather (especially

cloud) patterns and estimation of sea-surface temperatures

using the thermal bands (3550-3930 nm, 10300-11300

nm, and 11500-12500 nm). In recent years, however,

AVHRR imagery has been used to monitor the land's surface,

especially vegetation dynamics at regional to global scales
[1], [21 by using the reflective bands (580-680 nm in the

visible red, 725-1100 nm in the near-infrared). This imagery

lends itself to large-area monitoring applications because

of its low cost, wide-area coverage (over a million square

kilometers per scene), frequency of acquisition (twice per

day), and useful bands fl)r monitoring land processes.

The spatial resolution of AVHRR, about 1.1 km, precludes

monitoring land cover or mapping landscape features with the
traditional techniques of image classification because patterns

of land cover types are typically of a similar or smaller size.
For example, a standard size for agricultural fields in the

United States is 160 acres (or 65 ha, about 53% of an AVHRR

pixel). Clearcut patches in western forests generally range from

several hectares to one square kilometer. Patterns like these are
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readily observed and mapped with Landsat Thematic Mapper

(TM) imagery, with a resolution of 30 m, but TM data are

expensive to acquire and process (due to high data volume),

and coverage is relatively infrequent, due to the 16-day repeat

cycle of the Landsat orbit and frequent cloud obscuration.

It has been proposed that regional studies of land surface

processes involve a combination of low spatial resolution
sensors, such as AVHRR, and high-resolution sensors, such

as TM; several investigations have tested this approach [3],

[4]. Generally, the idea is that AVHRR data provide complete

coverage spatially and/or temporally, while TM data provide

detailed information in sample areas for "calibrating" the

AVHRR data. Unmixing techniques, which model pixels as

mixtures of pure components, potentially are useful in such

a scheme since AVHRR pixels are often mixed, while TM

imagery can provide information for fitting the model.

The study of biogeochemical cycling in the coniferous

torests of the western United States is an example of the type
of regional study that can potentially benefit from the approach

described above. Because of logging practices, many of these

forests are a patchwork of clearcuts of varying ages and sizes.

Disturbances such as clearcutting affect cycling of nutrients.

For example, newly disturbed sites in U.S. forests have been

shown to be susceptible to losses of nitrate, nitrogen gas, and
nitrous oxide [5]-[7]. Increased fluxes of carbon dioxide to

the atmosphere following disturbance have been observed [8].

Once uptake of nutrients by vegetation has resumed, nutrient
losses are substantially reduced.

There are three major stages of forest disturbance and re-

growth which are potentially observable with remotely sensed

imagery: newly disturbed or clearcut with mostly bare soil,

substantial regrowth where successional vegetation (shrubs,

brush, and young trees) dominate, and reestablishment of

coniferous canopy cover greater than 75%. The objective of the

work reported here was to develop procedures for unmixing

AVHRR using sample TM data. These techniques were applied
to mapping the three classes described above to test their utility

in detection, quantification, and mapping of forest disturbance.

II. THE STUDY AREA

The study area, shown in Figs. 1 and 2, was centered on

the H. J. Andrews Experimental Forest, a 6000-ha water-

shed located on the western slopes of the Oregon Cascade

range. The mixed-species coniferous forests at H. J. Andrews

are principally Douglas fir (Pseudotsuga menziesii), western

hemlock (Tsuga heterophylla), and western red cedar (Thuja
plicata) in the lower elevations (400-1050 m) and Pacific
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of clearcut sites were listed on H. J. Andrews stand history

documents [10] which reference the map. We visited and

photographed most of the sites in 1987; percent ground cover

of vegetation regrowth were estimated visually [1 I].

111. METHODS

Fig. I. False color composite (RGB = bands 1, 2, 4) of Landsat TM coverage

of the study site, H. J. Andrews Experimental Forest and environs. The mature

forest appears brown; clearcuts are blue; patches of successional vegetation

appear red/pink.

Fig. 2. False color composite (RGB = bands 1, 2, 3) of AVHRR coverage

of the study site. Boundaries delineate the area corresponding to Landsat TM

as pictured in Fig. 1.

silver fir (Abies amabalis) and western hemlock at higher

elevations 191.

Extensive logging began in 1950 and involved two methods:

1) salvage logging in which decadent trees were harvested

from old-growth stands, and 2) clearcut logging where all
trees were cut from sites ranging from 4 to 16 ha in area.

Following logging, many of the clearcut sites were burned to
remove slash and some were replanted with conifer seedlings.
The clearcut sites were delineated by U.S. Forest Service

researchers on a map of the H. J. Andrews Experimental
Forest. In addition, the years of logging and revegetation

A. The Mixture Model

Several investigators 112]-[15] have analyzed remotely

sensed imagery by estimating component proportions of

mixed pixels using a least squares approach. For our

application, the components are the three forest disturbance
classes (l-----clearcut, 2--forest of 75% crown closure, and

3--succession). The model for the radiance (L) of a pixel

(p) in band (b) is

L(p,b) = Ml(b) * Fl(p) + M2(b), F2(p) + M3(b)

, F3(p) + e(p, b) ([)

subject to the constraint

Fl(p) + F2(p) + F3(p) = 1 (2)

where Ml(b), M2(b), and M3(b) are the mean L values for
classes I, 2, and 3 in band b; and Fl(p), F2(p), and F3(p)
are the fractions of the three classes. The error term e.(p, b) is

a term representing the combined effect of local deviations of

L values of the components from their average values. In this

study, the L values were the digital numbers (DN values) of

the imagery; since DN values are linear functions of radiance

[16], (1) is still applicable.
Three assumptions determine the applicability of this model:

1) The land use/land cover classes each have a fairly distinct

spectral signature. In the case of the clearcut, forest and suc-

cesion classes, this was presumed to be true because they are
associated with three morphologically distinct associations of

vegetation (soil/grasses, shrubs/small trees, mature coniferous

trees) and because of their appearance in TM imagery (Fig.

1). 2) The scene is presumed to consist of a mosaic of patches

of the three cover types, as a result of clearcuts in an area that

was originally all forest. Fig. 1 shows that this presumption
is nearly true, although there are some small areas of water
and road. Factors 1) and 2) are the same as with applicability

of supervised classification. 3) The resolution of the AVHRR
sensors are all about the same, with a nominal resolution of

about 1.1 km.

The linearity of mixing is due to the process of image

Ibrmation by the AVHRR instrument. When atmosperic con-

ditions are fairly clear, radiance at the sensor is approximately
the convolution of the radiance from the scene with the

point-spread function (PSF) of the sensor. When the three

assumptions above are true, then the result of the convolution
is approximated by (1), with consistent values for Fl(p),

F2(p), F3(p) for all bands (because of factor 3). The model
will be useful, that is, the error tem] c(p,b) will be small

relative to the sum of the other terms, which will be the case

if assumption 1 (separability of classes) holds.
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B. Signature Development

The study area contained no patches of pure undisturbed
forest, clearcut, or successional stage that were several kilo-

meters in extent, therefore it was not possible to estimate

AVHRR signatures of these classes using the standard methods

associated with image classification. The AVHRR signatures
of the forest classes were instead derived through least squares

fitting of the mixture model. The TM data were used to

compute a training set of fractions on a portion of the study

area. Multivariate regression was then applied to the training
fractions and corresponding AVHRR radiance values to derive

least squares estimates of Ml(6), M2(b), and M3(/_). The

covariance of ¢_(p, IJ) was also estimated.

The data for the regression were developed from classified

TM imagery. A TM scene acquired on July 10, 1984 was

carefully examined to select a rectangular subimage including
the H. J. Andrews Experimental Forest while avoiding areas

with agricultural development and some large lava beds in

the vicinity of the Forest. This subimage covered approxi-

mately 110000 ha. The subimage was stratified into the three

forest disturbance cover classes by performing a supervised
maximum-likelihood classification. The training sites were 30

of the clearcut sites in the H. J Andrews Experimental Forest,
which were selected to be representative of the ranges of

clearcut ages and locations within the Forest. The classification

was quality checked by visual comparison with a color infrared

aerial photograph acquired from a 1983 flight of NASA/Ames
ER-2 aircraft at a scale of 1:65 000.

The classified TM data were then processed to create

three fraction images which were then registered to AVHRR

imagery. A binary image for each cover class (with l's for

pixels in the class, O's elsewhere) was created by recoding
the clustered image. Each binary image was convolved with

a Gaussian filter (approximating the point-spread function,

or "footprint," of AVHRR) to compute weighted averages of

the pixels (l's and 0's) over an area the size of an AVHRR
pixel 1171. Since the study area was located within the center

half of the range of the AVHRR scan, the nominal l.l-km

value was used for the half height width of the point-spread

function. The resulting pixel on each of the three fraction

images closest to each AVHRR pixel center was selected by

registration to a 40-by-50 pixel (242000 ha) subimage of
NOAA7/AVHRR acquired on July 10, 1984 at about 2:30

PST. The fraction images computed with TM were registered

to AVHRR to within about 0.5-pixel (AVHRR) accuracy,

using nearest neighbor resampling. The registered fraction data
consisted of a quadrilateral of 919 pixels within the 40-by-50

pixels surrounded by zero fill.

Standard multivariate analysis techniques were employed

to fit the mixture model. Using (2), (I) can be rewritten to
eliminate one fraction, F3, as

[_(t,, t,) = .,_1 * _'l(p) + .JV_* I'_'2(p) + A:_ + ,_(p, I,)

with

M l (t,) = A l + A :5

_I2(1,) = A2 + A:_

M3(/,) = A3. (3)

Estimates of the mean DN values for each class were thus

derived by regressing DN values against the fractions for

clearcut, F l(p), and forest, F2(p), to compute A l, A2, and A3
coefficients, and then computing MI(b), M2(/_), and AI3(6)

from (3). In addition, the covariance matrix of the regression

residuals, i.e., the values tbr _(p,b), were estimated using

the usual formulas for sample variance (standard deviation

squared) for each band and covariances of band pairs.

C. Unmixing

The AVHRR pixels were "unmixed" by application of

least squares estimation pixel-by-pixel after the signature

development. This amounts to least squares fit of (I), where
the coefficients to be estimated are now the fractions FI, F2,

and F3, and the "samples" are the image wavebands--the

AVHRR DN values associated with the pixel and the class
means in each band.

The constraints on estimates for the fractions were included

in the unmixing. As with signature development, Condition 2)

that the fractions sum to one was algebraically incorporated

into the estimation, a least squares fit of

7'(p, 6) = FI * HI(b) + F2 •/32(6) + c(p, 6) (4)

with

_(t,) = .,w_(t,) - M:_(l,)

Be = M2(t,) - 6t3(t,)

7'(p, t,) = L(p, t,) - .aI:_(t,)

to estinaate FI and b'2. Then F3 was computed as I -FI
-k'2.

This is a generalization of the two-class solution described

in [15]. Clearly, the method generalizes to any number N of

classes as long as there is enough intormation in the spectral
bands for solution to the system of equations specified by (4).
In the case of three classes, this means that there are two bands
where the class means are not colinear. A minimum of N - 1

bands is required that satisfy the condition that the means of
each class is not a linear combination, i.e., a weighted vector

sum, of other class means [18]. After least squares estimation,

nonnegative estimates were ensured by zeroing any negative

fractions for a pixel, and then normalizing by the sum of values
so that the sum of estimates would still be one. The negative

values could arise due to the error term (_(p, b)) in (4).

Two least squares techniques were implemented--ordinary

least squares (OLS) and generalized least squares (GLS) [19].

Ordinary least squares is a common regression technique and

is optimal for cases where the e(p, b) terms are identically and

independently distributed. In our application, this condition
means that variances of DN values within each of the three

tbrest classes are about the same and are not correlated

among bands. The generalized least squares technique is

optimized for cases where these conditions do not apply. It

was implemented by transforming the AVHRR DN values as
described in [I 81, and then applying OLS. The transformation

was computed from the covariance matrix for the _(p,b),
so that the transformed data would conform to the OLS

conditions.
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TABLE 1

AVHRR SIGNATURES OF FOREST CI.ASSES

.................................

MEANS ] COVARIANCEI

BAND I CLEARCUT FOREST SUCCESSION i 1 2 3 4 5

................................

1 i 74.3 55.3 65.1 I 3.24 13.9 23.4 6.7 5.7

2 i 100.9 95.3 164.0 l 118.8 -100.2 -35.5 33.2

3 I 331.1 642.8 614.4 i 1004.9 437.3 362.3

4 I 210.6 319.2 313.7 i 240.2 194.9

5 I 246.1 336.6 331.2 l 161.3

Note: all units are digltal counts of AVHRR.

The unmixing was computationally very simple. While

performing a regression analysis of each pixel in an image

can, in general, be a daunting task, it is greatly simplified

computationally by the fact that the dependent variables (i.e.,
the class means) were the same for each pixel. The regression

part, whether OLS or GLS, of the unmixing therefore was

equivalent to a linear transformation of the AVHRR image.

Zeroing negative values and renormalizing are also quite

simple compared to such alternatives as zeroing negative
estimates and computing least squares estimates on fewer

variables (in the three class case--one variable), as others have

done [15]. This simplified technique was considered adequate

because it should give estimates similar to those derived from

more sophisticated techniques when negative initial estimates
are small in magnitude. When the magnitude of negative initial

estimates is large, all estimates will probably be poor as this

will only occur when the error term in the model (1) is large

or when the model is innapropriate.

IV. RESULTS

A. Signature Development

Table I shows the signatures of the disturbance classes

estimated from the Andrews area--919 pixels of AVHRR

and class fractions computed with TM classified imagery.

These can be interpreted by noting that radiances in the
reflectance bands (AVHRR1 and AVHRR2) are approximately

increasing linear functions (positive slope) of the digital counts
while radiances in the longer wavelength bands (AVHRR3,

AVHRR4, and AVHRR5) are approximately decreasing linear

functions (negative slope) of the digital counts [I 61, [20]. Table

I, therefore, shows high reflectance in the visible band (band 1)
and thermal emittance (bands 3, 4, 5) of clearcuts compared

to vegetated areas. The mature forest is differentiated from
regrowth (succession) areas by lower reflectances, especially in

the NIR, due to predominance of conifer species in undisturbed

areas versus predominance of deciduous plants in disturbed

areas. Both vegetation classes are cooler by about 10°C,

estimated by conversion of digital counts to radiance values
followed by inversion of Planck's equation [20], than the

clearcut areas. These differences among classes are clearly

significant, given that they are at least several times the
standard deviations for each band (square root of the diagonal

elements of the covariance matrix).

Fig. 3 illustrates the similarities between the TM and

AVHRR signatures in the reflective bands. The 50% con-

centration ellipses for each TM class were constructed from

spectral statistics for the 30 sites used to train the classification.

50.0% CONCENTRATION ELLIPSES

FOR TM BANDS 4 AND 3

1O0
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25
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vegetation
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I I I I I
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TM Band 4, near inlrared

(a)
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I
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Fig. 3. 50% concentration ellipses of the signatures of clearcut, forest, and

successional forest in the visual red and near infrared of (a) Landsat TM and

(b) AVHRR.

The 50% concentration ellipses of AVHRR were constructed

with the means and covariances of Table I. The ellipses

corresponding to the cover classes form triangles; therefore,

mixtures of any two disturbance classes are distinct from the
third and estimation of mixture fractions appears feasible with

only these two bands.
Linear least squares methods are based on the assumption

that the distribution of the error term (1) and (4) does not

depend on the values of the independent variables [18l, [19].

For unmixing, these variables are the mean DN's for each
class; therefore, the assumption implies a single covariance

matrix lbr all classes [18]. To test the appropriateness of a

single variance-covariance matrix tbr all classes, in particular

equality of variances among classes, the residuals from the

signature development regression were analyzed using a tech-

nique similar to Levene's test [21] for equality of variance

in analysis of variance. First, autocorrelation functions were

evaluated to determine an appropriate sampling frequency so
that values were uncorrelated, as this is a general assumption

for statistical tests of significance. The magnitudes of the
autocorrelations were less than their standard error values

with a spacing of four or more. The absolute value of the

residuals for the pixels in every fifth row and every fifth

column were regressed on the class fractions. The regressions
of the residuals in AVHRR2 were highly significant (p = 0.03)

for both clearcut and forest, and somewhat less significant

(t' = 0.11) for the successional class. The regressions for the

other bands were somewhat less significant for AVHRR 1 (I'

values of 0.13 to 0.33) and much less significant in the thermal
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TABLE I1
ES33M-\IES FROM UNMIXING AVHRR BANDS I, 2, 3,

4 (WI,S RI¢SUIIS)COMPARI])TOTM EsrIMxn_:s

CLASS l TM ESTIMATES [ UNMIXED AVHRR 1 REGRESSION ANALYSIS

l m(%) s(%) I ra(%) s(%) RNSE(%) I b0 bl R^2

FULL AREA(N - 919)

clearcut l 7.6 8.1 I 8.5 9.3 5.8 l 1.9 0.68 .63

forest [ 65.6 17.8 _ 65.2 22.7 15.1 ] 27,3 0,58 .56

successlon I 26.7 13.6 l 25.3 20.1 15.2 ] 14.2 0,47 ,45

CROSS 1 (N - 471)

clearcut 1 5.7 5.8 i 5.9 7.3 5.6 ] 2.6 0.53 .43

forest 1 68.7 14.4 ] 70.5 17.0 14,7 ] 33.9 0.49 .34

successlon I 25.6 11.7 I 23.5 16.3 14,4 l 16.8 0.37 ,27

CROSS 2 (N - 448)

cleaccut l 9.7 9.4 i 10,5 10.6 6.0 ] 2,0 0,73 .69

forest l 62.5 20.4 ] 52.4 30.4 21.3 ] 34,5 0,53 .63

successlon ] 27.8 15.4 [ 37.0 24.5 19.6 [ 11.2 0.45 .51

......................

TABLE 111
ESTIM,,\rrt_SFROXaUNMIXINGAVHRR 1, _,v3,

4 (OLS RESUI.TS) C(1MPARH)TO TM EsrnMA3"I'S

CLASS l TM ESTIMATES I UNMIXED AVHRR I REGRESSION ANALYSIS

[ rn(%) S(%) [ m(%) s(%) RNSE (%) [ b0 bl R^2

FULL AREA(N = 919)

clearcut I 7.6 8.1 I 9.7 10.5 8.4 1 2.9 0.49 .40

forest 1 65.6 17.8 i 65.0 24.6 18.1 I 33.7 0.49 .46

successlon l 26,7 13.6 i 25.3 20.1 15.1 I 15.4 0.45 .43

CROSS I (N = 4711

clearcut ] 5.7 5.8 I 11.8 9.1 9.9 1 1.7 0.34 .28

forest [ 68.7 14.4 I 65.3 19.5 17.9 l 44.6 0.3"; .25

successlon l 25.6 11.7 i 22.8 16.0 14.4 l 17.0 0.38 .27

CROSS 2 (N = 448)

clearcut i 9.7 9.4 I 7.8 10.5 7.7 ] 4,6 0.65 .53

forest I 62.5 20.4 I 64.4 31.2 20.1 ] 29.8 0.51 .60

succession I 27.8 15.4 [ 27.8 25.1 17 .7 ] 15.7 0.44 .51

bands. These results suggest that a single covariance matrix

adequately represents all three classes for AVHRR 1, 3, 4, 5,

but not AVHRR 2. Positive regression coefficients suggest that
there is more variation in near-infrared reflectance in clearcuts

and regrowth areas than in the undisturbed forest (negative
regression coefficient).

B. Unmixing

The unmixing procedure was tested first by using the

signatures reported in Table I to unmix the AVHRR data
(bands 1-41. Then the procedure was further tested by splitting

the study area roughly into north and south halves and using

the north half for signature development and unmixing the
south half (CROSS 1) and vice versa (CROSS 2). The results

are summarized in Tables 1I (GLS technique) and Ill (OLS

technique) which show the mean (m,) and standard deviation

(.s) for each class fraction, as estimated by TM and by unmixed

AVHRR, the root mean square error (rmse) of the unmixed
AVHRR relative to the TM fractions, and the results of

regressing the unmixed AVHRR pixels against the convolved
TM.

Comparison between the mean TM and AVHRR fractions

(Table lI) shows that GLS unmixing predicted the composition

of the study site fairly well, although there was some confusion
between forest and regrowth areas in the southern half of the

area. Per-pixel estimates of mixture were not very accurate,

however, with rmse values nearly as large as the standard

deviation of the TM fractions. This may have been due to

effects of registration errors as well as innaccuracies of the

unmixed imagery, as the scale of the registration errors (0.5
pixel) was similar to the scale of the clearcuts. Still, since the

R-squared values were highly significant (p < 0.01 for degrees

of freedom approximating the number of pixels divided by 25)

the unmixed image generally follows trends in land use, as is

also evident in plots of TM and AVHRR fractions along four
arbitrarily selected transects through the full test area (Fig. 4).

Comparisons between Tables II and III indicate the gen-

erally superior performance of the GLS unmixing proce-
dure relative to OLS. This was expected, given considerable

differences between signature variances between bands and
correlations between bands indicated in Table I.

The unmixing procedure was further tested with AVHRR

bands I and 2, as the separability of classes appeared to be

TABLE IV

ESrlMATES FROM UNMIXING AVHRR 1, 2 COMPARHD T(} TM _7]srrlMAI3"S

.......................

CLASS l TM ESTIMATES ] UNMIXED AVHRR l REGRESSION ANALYSIS

I m(%) S(%) l m(%) S(%) RMSE (%) I b0 bl R'2

FULL AREA(N = 919)

clearcut i 7.6 8.1 i 8.7 9.5 6.3 I 2.1 0.64 .58

forest 1 65.6 17.8 I 65.2 22.7 15.1 I 27.4 0.59 .56

successlon ] 26.7 13.6 L 26.0 19.3 14.5 1 14.6 0.47 .43

CROSS 1 (N = 471)

clear cut l 5.7 5,8 l 4.7 7.3 6.1 l 3.4 0.48 .35

forest I 68.7 14.4 l 71,4 16.9 14.4 1 32.0 0.51 .36

succession I 25.6 ii.7 1 23.8 16.3 14.3 ] 16.7 0,38 ,27

CROSS 2 (N = 448)

clearcut ] 9.7 9.4 ] 13.4 11.2 7.5 I 0.6 0.68 .66

forest ] 62.5 20,4 I 53,9 30.6 20.5 l 33.6 [1.54 .65

successlon l 27.8 15.4 l 32.6 23.9 17.1 l 12.5 0.47 .54

.............................

sufficient with just these two reflective bands (Fig. 3). As
before, unmixing was tested using Table I signatures on the full

study area and using cross validation (CROSS I and CROSS
2). In this two-band and three class case, the formulas for

least squares estimates (either OLS or GLS) are equivalent
to the exact solution of (1) and (2), ignoring the error terms.

As can be seen by comparing results summarized in Table IV

with Tables lI and IIl, the resulting estimates of class fractions

were actually better than OLS estimates with AVHRR bands

1-4 and almost as good as GLS estimates using the four bands.
There were small improvements in estimates of the clearcut

fractions by including the thermal bands, with increases in
R _ values for clearcut of 5% (using Table 1 signatures), 8%

(CROSS 1), and 3% (CROSS 2) and small degradations in /_2

of 0% to 3% for the forest and regrowth classes.

V. CONCLUSIONS

Methods have been developed to extract signatures from

AVHRR using finer resolution data for training, and for unmix-

ing AVHRR pixels. These methods are based on constrained

least squares and generalized least squares techniques, and are
computationally simple and fast.

While thorough testing of procedures at the scale of an

AVHRR data set (millions of square kilometers) was beyond

the scope of this investigation, the results of assessment with

test areas selected from a Landsat scene (hundreds of square

kilometers) look promising. The extracted signatures exhibited

the expected spectral properties of the classes. Estimates of
percentages of the land cover types of the test areas from the
unmixed AVHRR were within 10% of the estimates based on
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analysis of Landsat TM imagery. The apparent accuracy of

estimated percentages at finer (per-pixel) scale were poor.

Including thermal bands in unmixing only minimally im-

proved results when using GLS techniques, and actually

degraded the results obtained with only the reflective bands

when using OLS techniques. This suggests that thermal infor-

mation does not contribute much to analysis of land cover.

The improvement in results through using GLS rather than

OLS with more than the minimal number of bands (number

of classes less one, when the solution is exact) suggests

GLS techniques may improve the results of unmixing in

applications with other sensors, particularly when the spectra

characteristics of the mixing components are variable, as is

the case with land cover types.

Application of unmixing to large areas, such as the millions

of square kilometers covered in an AVHRR frame, would

involve some extra steps in processing. For example, one could

consider extending this analysis of forest and clearcuts to a

large region in the Pacific NW. This would require masking

out nonforest areas, such as valleys and large areas of lava



794 IEEETRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING. VOL. 33, NO. 3. MAY 1995

8

0 10 20 30 40

0 10 20 30 40

0 10 20 30 40

POSITION ALONG TRANSECT(PIXEL#1

(c)

0 10 20 30 40

0 10 20 30 40

i.
o

0 10 20 30 40

POSITION ALONG TRANSECT(PIXEL#)

(d)

Fig. 4. Percent clearcut, forest, and successional forest (brush) for pixels along four transects in the imagery as computed with TM (dotted line) and

AVHRR (GLS unmixing technique, solid line). (a) Fifteenth column. (b) Thirtieth column.

flows, in order to restrict application of unmixing to areas

which can be modeled as mixtures of the three forest classes.

Preprocessing the data, for example by applying radiometeric

corrections for slope aspect effects, would help to minimize

variation in the spectral characteristics of the forest classes

across the region. Use of several finer scale images would be

advisable for developing representative signatures.
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